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ABSTRACT

Based on the mode–matching method useful for

computing the accurate resonant frequencies, two

approaches due to the complex frequency and to the
perturbation theory are described to accurately

compute Q–factors of TE dielectric rod resonators

?placed between two para lel conductor plates and in

a conductor cavity. Influence of the conductor
shields on the Q–factors is discussed from the

computed results.

INTRODUCTION

Dielectric resonators widely used in microwave

circuits are placed in conductor shields to prevent

radiation loss. The analyses of Q-factors for such

shielded resonators have been treated by several

authors [1]–[6]. As the first approach, we commonly

use the definition Q=w(the energy stored)/(the

average power dissipated), where u is the resonant

angular frequency. However, its analysis for such
resonators is quite involved since the exact field

expressions are very complicated [1], and therefore

simplifying approximations are considered [2], [3].

As the second approach, a conception of the complex

frequency is introduced into the characteristic

equations to simultaneously determine the resonant

frequencies and Q-factors. This method is useful

for computing the Q–factors due to dielectric and

radiation losses, Qd and Qrad [4], [5]. A technique
of computing one due to the conductor loss Q in

a similar manner has also been presented by Majcand

Modelski [5]. However their procedure, which con-
siders a conductor layer in the conductor wall, ap–

pears to be rather complicated. The third approach

based on the perturbation of cavity walls has been

presented by Kajfez [6]. This is the most available

method for the Q computation of the TEO mode,

since it requirescthe frequency computation only.

However, a similar analysis for Qd have not been

treated so far.

In this paper, based on the mode-matching

method useful for computing the accurate resonant

frequencies [7],[8], two approaches due to the com–

plex frequency and to the perturbation theory are

described to accurately compute the Q–factors of

the TEO modes for resonator structures shown in

Fig. 1. The extension of Kajfez’s method to the Qd
computation can be realized by means of the cavity–
material perturbations. These considerations allow
us to separately estimate the influence of the con–

ductor silields on the Qc and Qd values. Validity clf

the theories is verified by experiments.

CHARACTERISTIC EQUATIONS

Consider three types of shielded dielectric

resonators shown in Fig. 1. A dielectric rod of

relative permittivity Er and diameter D is placed

between two parallel conductor plates as in Fig.

l(a) or (b), or in the center of a conductor cavity

of diameter d and length 2h as in Fig. l(c). They
are called parallel–plates–image, parallel-plates-

open, and cavity–open types, respectively. The con-
ductor and dielectric are supposed to be lossless

first. From the structural symmetry in Fig. l(b)

the resonant modes can be classified into those for

which T–plane (r@–plane at z=O) is an electric wall

and the others for which it is a magnetic wall.

The former case also corresponds to Fig. l(a). An

analysis for the TEO mode can be performed by t’he

mode expansion method. As the result we obtain the

following characteristic equation [7]:

det H =0 (1)

where the matrix element h qp (q, P=l, 2,..., N) is
given by

Jl(u ) HI (V )

[ u Jo(u ) - V Ho (V )
] “Fqp

hqp= (2)

[Xp2-Zq2] [( Yp/M)2-(Zq/L)2]

Xpcot Xp–zqcot z
Fqp={ q}

Xptan Xp–Zqtan Z
q

(3)

Zq= { q+, (2q-l)lT* } (5)

In the above the upper and lower (or the first and

second) expressions in { } correspond to the elec-
T–plane modes, respectively.

~~~m~n~a~~~etlcejwt is ~racitly ~ssumed
. Also C

is the light velocity in a vacuum, J (x) the Bessel

function of the first kind, and H (x? the Hankel
function of the second kind. Furthermore (X

is given as the p’th solution of the followin g’ ‘(P)

simultaneous equations:

281

0149-645X18510000 – 0281 $01.00@ 19851EEE 1985 IEEE MTT-S Digest



{ -Xcot X, X tanX }=fi cot Y

} (6)

(X/L)2-(Y/M)2=(W/C)2(&r-1)

When {h, 2h} >kO/2, where AO,is the resonant

frequency, the resonant modes are In a leaky state

[8]: a part of energy leaks away from the resonator

in the radial direction. On the other hand, when

{h, 2h}< ho/2, the resonant modes are in a trapped

state: ‘the energy is trapped in and near the rod.

In this case, it follows that v =–jv’ (v’ is real

number) for anv a value. and the~ theqtermqcontain–

ing the Hankel’

HI(v )

vH(v)
qoq

where Kn(x) is

second kind.

functions in (2) is rewritten as

Kl(v’)
+–

v’K (V’)
qoq

(7)

the modified Bessel function of the

Particularly, the case of {h, 2h}=

Ao/2 represents a cutoff of the trapped state.
Furthermore, for the cavity-open type resona–

tor in Fig. l(c) the following exchange only is

needed in (2):

HI(v ) Il(V’)Kl(V’S)-I1(V’S)Kl(V;)

vH(v) ‘S)+I1(V;S)KO(V;)]+ V;[Io(V;)Kl(Vq
(8)

qoq

where S=a/R and In(x) is the modified Bessel func–

tion of the first kind.

ANALYSIS BY COMPLEX FREQUENCY TECHNIQUE

As the first approach we introduce the complex

angular frequency

and the complex relative permittivity

tr=&r(l -j tan 6) (lo)

into (l), where fl and Qf are the resonant fre–

quency and Q–factor for a damped-free oscillation,

respectively, and tan 6 is the loss tangent of die–

lectric.

ANALYSIS BY PERTURBATION TECHNIQUE

Following Kajfez’s method, we can compute the
Qc values from

for Fig. l(a), (b), and (c), respectively, where

‘o
‘cu=(-Afo/AM)6c’

‘o
‘cl=(-Afo/AL)6c’

‘o
‘cy=(-Afo/Ad)6c’

and Q , Qcl, and Q are Ones
tor lo%es of the Cy upper and

the cylinder, respectively. The

(12)

due to the conduc–

lower plates and of

frequency shift AfO

due to the cavity-wall perturbation Ax, where x

represents M, L, or d, can be numerically and _1j2

accurately computed from (l). Also ~c=(mfoU~)

is the skin depth of the conductor.

Similarly Qd can be derived by means of the
cavity–material perturbations. At first, from the

definition of Qd ;e obtain

Wd+wa

Qd=&
‘d

where Wd and Wa are the electric energy

the dielectric and air, respectively.

obtain

Z!=_$—_ ‘d

‘o
r Wd+wa

from the frequency shift Afn due to the

(13)

stored in

Then we

(14)

material

perturbation AS in a cavity” including dielectrics

[9]. Hence fromr(13) and (14) the following formula

can be obtained:

f.

Q=Ld tan ~ (-Afo/Asr)2E
(15)

r

where the value of AfO /AE also can be computed

from (l). Thus, using (ll)rand (15), we can obtain

the unloaded Q, Qu from

L=L+L
Qu Qc Qd

(16)

This method is valid only without radiation.

COMPUTATION AND EXPERIMENT

The computation and experiment were performed

using a (Zr.Sn)Ti04 ceramic rod (MURATA MFG.CO. ,

LTD.~ with & =37.43 and tan 6=(00205+0.170fo[GHz])

xlo– and tworcopper plates with ~=~/~ =0.92, where
00= 58x106 S/m. These values were mea%red by a
d~elctric rod resonator method [10].

parail~~;~~l-;~~~~~fl”’ ‘1+6)/2 %~~;~;h;n

Fig. l(a) and for the TEold mode of the parallel-

plate–open type one in Fig, l(b), the complex

frequency versus the distance M was computed using

(l)-(6) with (9) and (10). The respective results

are shown in Figs, 2 and 3 by solid lines. Broken

lines in the figures show the cutoffs. The left–

hand side of the cutoff is the trapped state re–

gion, while the right–hand side is the leaky state

region.

In addition the measured values of the reso–

nant frequency f. and the unloaded Q, Q by the
swept–frequency method are indicated by”dots in the
figures. In both case=, the theoretical f curves

agree very well with the measured f. values+ The

theoretical Qf curves in the trapped state, which

actually means Qd, are greater than the measured Qu

values since the conductor loss is not considered

in the analysis, while the O. curves in the leakv

state, which consist of Qd andr Qrad, agree well t:

the measured Qu values since the radiation loss

is predominant.

In the following,

Qc, Qd, and Qu values

for the same structures the

in the trapped state were
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computed using (l)–(7), (11), (12), (15), and (16).

The respective results are shown in Figs. 4 and 5,

where the computed fO curves are not shown since

they are identical to the fl curves given in Figs.

2 and 3, respectively. In both structures, the Qd

values computed from (15) agree to within 0.05 per–

cent with the computed Qf curves in the trapped

states in Figs. 2 and 3. Moreover, the computed Qu
curves agree very well with the measured Q values

which are reproductions of those in Figs. ‘2 and 3.
Thus validity of two methods described above was

verified. It should be noted that the Qc values
increase rapidly with increasing M.

POSSIBILITY OF HIGH-Q DIELECTRIC RESONATORS

Finally, for the TE mode of the cavity–open
type resonator in Fig. l~~f with the optimum dimen–

sions to obtain the best separation of higher–order

modes [8], the f and Q values were computed using

(l)-(6), (8), (119, (12): (15), and (16). When Cr=

37.5 and D=1O mm, the optimum values are 2L=4.19

mm, M=5.26 mm, and d=27.O mm, and then we obtain f.

=5.37 GHz and Qdtan 6=1.026. For ~=1.O (copper)

we obtain QCU=3.40X105, Qcy=5.54x105, and therefore

QC=1.30X105. Thus we obtain QU=9,520 when tan d=

lXIC)-4 and also QU=57,000 when tan 6=1x10-5. For a

empty cavity, on the other hand, the theoret–

~~ilmaximum ‘U As a res lt, if 10W-lOSL materialsvalue attained when d=2h is 41,000

at fo=5.4 GHz.
-Y

with tan 6 of nearly 10 are developed, shielded

dielectric resonators will realize the Qu values

higher than those of conductor cavities.

CONCLUSION

It is concluded that two approaches presented

are effective for the separate and accurate estima–

tion of the Q–factors due to the dielectric, con–
ductor, and radiation losses for the TEO modes of

the shielded dielectric resonators. The computed
results show that the Q value due to the conductor

loss increases rapidly as the conductor is moved

gradually away from the dielectric. As a result, a

possibility of realizing high–Q dielectric resona–

tors in the microwave region was suggested. In ad-

dition, a practical application of such resonators
in the millimeter wave region also can be expected

as suggested by Dydyk [11].
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Fig. 1.

(a) (b) (c)

Configurations of shielded dielectric rod
resonators of three types; (a) parallel–
plate–image type, (b) parallel–plate–open

type, and (c) cavity–open type.
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