INFLUENCE OF CONDUCTOR SHIELDS ON THE Q-FACTORS
OF A TE, DIELECTRIC RESONATOR
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ABSTRACT

Based on the mode-matching method useful for
computing the accurate resonant frequencies, two
approaches due to the complex frequency and to the
perturbation theory are described to accurately
compute Q-factors of TE, dielectric rod resonators
placed between two para?lel conductor plates and in
a conductor cavity. Influence of the conductor
shields on the Q-factors is discussed from the
computed results,

INTRODUCTION

Dielectric resonators widely used in microwave
circuits are placed in conductor shields to prevent
radiation loss. The analyses of Q-factors for such
shielded resonators have been treated by several
authors [1]-[6]. As the first approach, we commonly
use the definition Q=w(the energy stored)/(the
average power dissipated), where w is the resonant
angular frequency. However, its analysis for such
resonators is quite involved since the exact field
expressions are very complicated [1], and therefore
simplifying approximations are considered [2], [3].
As the second approach, a conception of the complex
frequency is introduced into the characteristic
equations to simultaineously determine the resonant
frequencies and Q-factors. This method is useful
for computing the Q-factors due to dielectric and
radiation losses, Qd and Qrad [41,{5]. A technique
of computing one due to the = conductor loss Q_ in
a similar manner has also been presented by Maj and
Modelski [5]. However their procedure, which con-
siders a conductor layer in the conductor wall, ap-
pears to be rather complicated. The third approach
based on the perturbation of cavity walls has been
presented by Kajfez [6]. This is the most available
method for the Q computation of the TE. mode,
since it requires the frequency computation only,
However, a similar analysis for Qd have not been
treated so far.

In this paper, based on the mode-matching
method useful for computing the accurate resonant
frequencies [7},[8], two approaches due to the com-
plex frequency and to the perturbation theory are
described to accurately compute the Q-factors of
the TE. modes for resonator structures shown in
Fig. 1. The extension of Kajfez's method to the Q
computation can be realized by means of the cavity—
material perturbations. These considerations allow
us to separately estimate the influence of the con-
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ductor shields on the Q_ and Q
the theories is verified by

values. Validity of
experiments.

CHARACTERISTIC EQUATIONS

Consider three types of shielded dielectric

resonators shown in Fig. 1. A dielectric rod of
relative permittivity € and diameter D is placed
between two parallel conductor plates as in Fig.
1(a) or (b), or in the center of a conductor cavity
of diameter d and length 2h as in Fig. 1(c). They
are called parallel-plates-image, parallel-plates—
open, and cavity-open types, respectively. The con-
ductor and dielectric are supposed to be lossless
first, From the structural symmetry in Fig. 1(b)
the resonant modes can be classified into those for
which T-plane (rb-plane at z=0) is an electric wall
and the others for which it is a magnetic wall.
The former case also corresponds to Fig. 1(a). An
analysis for the TE, mode can be performed by the
mode expansion method. As the result we obtain the
following characteristic equation [7]:

det H =0 (L)

where the matrix element h__ (g, p=1, 2,..., N) is
given by 4
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In the above the upper and lower (or the first and
second) expressions in } correspond to the elec~
tric and magnetic T-plane modes, respectively.
A time factor e is tracitly assumed. Also c
is the light velocity in a vacuum, J_(x) the Bessel
function of the first kind, and H_(x) the Hankel
function of the second kind. Fulthermore X, ¥)
is given as the p'th solution of the following p
simultaneous equations:
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{ =X cot X, X tan X }=ﬁ—¥ cot Y

} (6)
(X/L)Z—(Y/M)2=(w/c)2(ar-l)

When {h, 2h} >K0/2, where A, is the resonant
frequency, the resonant modes are in a leaky state
[8]: a part of energy leaks away from the resonator
in the radial direction. On the other hand, when
{h, Zh}g A./2, the resonant modes are in a trapped
state: ~the energy is trapped in and near the rod.
In this case, it follows that v =-jv' (v' is real
number) for any q value, and thefl the%term%contain-
ing the Hankel functions in (2) is rewritten as

Hl(vq) L Kl(vé)
quO(vq) quO(Vq)

(7N

where K_(x) is the modified Bessel function of the
second kind. Particularly, the case of {h, 2h}=
A./2 represents a cutoff of the trapped state.

Furthermore, for the cavity-open type resona-
tor in Fig. 1(c) the following exchange only is
needed in (2):

Hy(v,)

VqHO(vq)

. Il(vé)Kl(véS)—Il(véS)Kl(vé)
Vé[IO<Vq)K1(vqs)+I1(qu)KO(vq>]

(8)
where S=a/R and I (x) is the modified Bessel func-
tion of the first " kind.

ANALYSIS BY COMPLEX FREQUENCY TECHNIQUE

As the first approach we introduce the complex
angular frequency

B=w +3w,;  f)= wl/zﬂ, Qf=w1/2w2, (9)
and the complex relative permittivity
€r=€r(1 -j tan §) (10)

into (1), where f. and Qf are the resonant fre-
quency and Q-factor for a ~“damped-free oscillation,
respectively, and tan ¢ is the loss tangent of die-
lectric.

ANALYSIS BY PERTURBATION TECHNIQUE

Following Kajfez's method, we can compute the
QC values from

11
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for Fig. 1(a), (b), and (c), respectively, where

f f
- 0 0
ch‘(—AfO/AM>6C’ ch'(—AfO/AL)GC’
£ (12)

— 0
Qcy_(—AfO/Ad)GC’

and ch, ch, and Q_ _ are ones due to the conduc-
tor losses ~~of the “upper and lower plates and of

the cylinder, respectively., The frequency shift Afo
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due to the cavity-wall perturbation Ax, where x
represents M, L, or d, can be numerically and _
accurately computed from (1). Also 5C=(ﬂfOU0)
is the skin depth of the conductor.

Similarly Qd can be derived by means of the
cavity-material " perturbations. At first, from the
definition of Qd we obtain

1/2

1 wd+wa

Qd= tan O Wd (13)

where W, and W_ are the electric energy stored in

the dielectric ~ and air, respectively. Then we
obtain
. 0w
0 r at'a

from the frequency shift Af_ due to the material
perturbation ASr in a cavity including dielectrics
[9]. Hence from (13) and (14) the following formula
can be obtained:
Q 1 fo
= § (-Af_/Ae yoe
d” tan ( fO/ r)2 r

(15)

where the value of Af, /A€ also can be computed

from (1). Thus, using (11) and (15), we can obtain
the unloaded Q, Qu from
%;—= é—+ é~ (16)
u c d

This method is valid only without radiation.
COMPUTATION AND EXPERIMENT

The computation and experiment were performed
using a (Zr.Sn)Ti0, ceramic rod (MURATA MFG.CO.,
LTD.A with € =37.43 and tan 9=(0.205+0.170f.[GHz])
xX10” and6tworcopper plates with U=0/OO=O.92, where
O = 58%10° S/m. These values were measured by a
dielctric rod resonator method [10}.

mode of the

At first, for the TE s
parallel-plate-image type 01 (1+0)/2 resonator in
§ mode of the parallel-

Fig. 1(a) and for the TE

plate-open type one in Fig. 1(b), the complex
frequency versus the distance M was computed using
(1)-(6) with (9) and (10). The respective results
are shown in Figs. 2 and 3 by solid lines. Broken
lines in the figures show the cutoffs. The left-
hand side of the cutoff is the trapped state re-
gion, while the right-hand side is the leaky state
region.

In addition the measured values of the reso-
nant frequency f_ and the unloaded Q, Q by the
swept-frequency method are indicated by dots in the
In both cases, the theoretical £, curves
agree very well with the measured f. values. The
theoretical Q. curves in the trapped state, which
actually means Q,, are greater than the measured Q
values since the conductor loss is not considered
in the analysis, while the Qf curves in the leaky
state, which consist of Q, and™ Q qr asree well to
the measured Q_ values since the T2l adiation loss
is predominant.

In the following, for the same structures the
Qc’ Qd’ and Qu values in the trapped state were

figures,



computed using (1)-(7), (11), (12), (15), and (16).
The respective results are shown in Figs. 4 and 5,
where the computed £, curves are not shown since
they are identical to the f, curves given in Figs.
2 and 3, respectively. In both structures, the Q
values computed from (15) agree to within 0.05 per-
cent with the computed Q. curves in the trapped
states in Figs. 2 and 3.” Moreover, the computed Q
curves agree very well with the measured Q values
which are reproductions of those in Figs.u2 and 3.
Thus validity of two methods described above was
verified. It should be noted that the Q values
increase rapidly with increasing M. ©

POSSIBILITY OF HIGH-Q DIELECTRIC RESONATORS

Finally, for the TE 1 mode of the cavity-open
type resonator in Fig. 19c§ with the optimum dimen-
sions to obtain the best separation of higher-order
modes [8], the £, and Q values were computed using
(1)=(6), (8), (119, (12)¥ (15), and (16). When € =
37.5 and D=10 mm, the optimum values are 2L=4.19 v
mm, M=5.26 mm, and d=27.0 mm, and then we obtain £
=5,37 GHz and than §=1.026. For 0=1,0 (copper)

we obtain ch:3.4OX105, Qcy=5.54X105, and therefore

3 Thus we obtain Qu=9’520 when tan 0=

QC=1.3OX10 .

1><1O_4 and also Qu=57,000 when tan 6=1X10‘5. For a
TEO 1 empty cavity, on the other hand, the theoret-
ical m

aximum Q value attained when d=2h, is 41,000

at £ .=5.4 GHz." As a result, if low-loss materials
with~ tan § of nearly 10 ~ are developed, shielded
dielectric resonators will realize the Qu values

higher than those of conductor cavities.
CONCLUSION

It is concluded that two approaches presented
are effective for the separate and accurate estima-
tion of the Q-factors due to the dielectric, con-
ductor, and radiation losses for the TE, modes of
the shielded dielectric resonators. The computed
results show that the Q value due to the conductor
loss increases rapidly as the conductor is moved
gradually away from the dielectric. As a result, a
possibility of realizing high-Q dielectric resona-
tors in the microwave region was suggested. In ad-
dition, a practical application of such resonators
in the millimeter wave region also can be expected
as suggested by Dydyk [11].
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Fig. 1. Configurations of shielded dielectric rod
resonators of three types; (a) parallel-
plate-image type, (b) parallel-plate-open

type, and (c) cavity-open type.
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