

INFLUENCE OF CONDUCTOR SHIELDS ON THE Q-FACTORS
OF A TE_0 DIELECTRIC RESONATOR

Yoshio Kobayashi, Takayuki Aoki*, and Yukimasa Kabe

Department of Electrical Engineering

Saitama University

Urawa, Saitama, 338 Japan

(* Now with Nippon Electric Co. Ltd., Kawasaki, 211 Japan)

ABSTRACT

Based on the mode-matching method useful for computing the accurate resonant frequencies, two approaches due to the complex frequency and to the perturbation theory are described to accurately compute Q-factors of TE_0 dielectric rod resonators placed between two parallel conductor plates and in a conductor cavity. Influence of the conductor shields on the Q-factors is discussed from the computed results.

INTRODUCTION

Dielectric resonators widely used in microwave circuits are placed in conductor shields to prevent radiation loss. The analyses of Q-factors for such shielded resonators have been treated by several authors [1]-[6]. As the first approach, we commonly use the definition $Q = \omega(\text{the energy stored})/(\text{the average power dissipated})$, where ω is the resonant angular frequency. However, its analysis for such resonators is quite involved since the exact field expressions are very complicated [1], and therefore simplifying approximations are considered [2], [3]. As the second approach, a conception of the complex frequency is introduced into the characteristic equations to simultaneously determine the resonant frequencies and Q-factors. This method is useful for computing the Q-factors due to dielectric and radiation losses, Q_d and Q_{rad} [4], [5]. A technique of computing one due to the conductor loss Q_c in a similar manner has also been presented by Maj and Modelska [5]. However their procedure, which considers a conductor layer in the conductor wall, appears to be rather complicated. The third approach based on the perturbation of cavity walls has been presented by Kajfez [6]. This is the most available method for the Q_c computation of the TE_0 mode, since it requires the frequency computation only. However, a similar analysis for Q_d have not been treated so far.

In this paper, based on the mode-matching method useful for computing the accurate resonant frequencies [7], [8], two approaches due to the complex frequency and to the perturbation theory are described to accurately compute the Q-factors of the TE_0 modes for resonator structures shown in Fig. 1. The extension of Kajfez's method to the Q_d computation can be realized by means of the cavity-material perturbations. These considerations allow us to separately estimate the influence of the con-

ductor shields on the Q_c and Q_d values. Validity of the theories is verified by experiments.

CHARACTERISTIC EQUATIONS

Consider three types of shielded dielectric resonators shown in Fig. 1. A dielectric rod of relative permittivity ϵ_r and diameter D is placed between two parallel conductor plates as in Fig. 1(a) or (b), or in the center of a conductor cavity of diameter d and length 2h as in Fig. 1(c). They are called parallel-plates-image, parallel-plates-open, and cavity-open types, respectively. The conductor and dielectric are supposed to be lossless first. From the structural symmetry in Fig. 1(b) the resonant modes can be classified into those for which T-plane ($r\theta$ -plane at $z=0$) is an electric wall and the others for which it is a magnetic wall. The former case also corresponds to Fig. 1(a). An analysis for the TE_0 mode can be performed by the mode expansion method. As the result we obtain the following characteristic equation [7]:

$$\det H = 0 \quad (1)$$

where the matrix element h_{qp} ($q, p=1, 2, \dots, N$) is given by

$$h_{qp} = \frac{\frac{J_1(u_p)}{u_p J_0(u_p)} - \frac{H_1(v_q)}{v_q H_0(v_q)} \cdot F_{qp}}{[X_p^2 - Z_q^2][(Y_p/M)^2 - (Z_q/L)^2]} \quad (2)$$

$$F_{qp} = \left\{ \begin{array}{l} X_p \cot X_p - Z_q \cot Z_q \\ X_p \tan X_p - Z_q \tan Z_q \end{array} \right\} \quad (3)$$

$$u_p = \sqrt{\left(\frac{\omega R}{c}\right)^2 \epsilon_r - \left(\frac{R}{L} X_p\right)^2}, \quad v_q = \sqrt{\left(\frac{\omega R}{c}\right)^2 - \left(\frac{R}{L} Z_q\right)^2} \quad (4)$$

$$Z_q = \left\{ q\pi \frac{L}{h}, (2q-1)\pi \frac{L}{2h} \right\} \quad (5)$$

In the above the upper and lower (or the first and second) expressions in {} correspond to the electric and magnetic T-plane modes, respectively. A time factor $e^{j\omega t}$ is tacitly assumed. Also c is the light velocity in a vacuum, $J_n(x)$ the Bessel function of the first kind, and $H_n(x)$ the Hankel function of the second kind. Furthermore (X_p, Y_p) is given as the p'th solution of the following simultaneous equations:

$$\left. \begin{aligned} \{-X \cot X, X \tan X\} &= \frac{L}{M} - Y \cot Y \\ (X/L)^2 - (Y/M)^2 &= (\omega/c)^2 (\epsilon_r - 1) \end{aligned} \right\} \quad (6)$$

When $\{h, 2h\} > \lambda_0/2$, where λ_0 is the resonant frequency, the resonant modes are in a leaky state [8]: a part of energy leaks away from the resonator in the radial direction. On the other hand, when $\{h, 2h\} \leq \lambda_0/2$, the resonant modes are in a trapped state: the energy is trapped in and near the rod. In this case, it follows that $v = -jv'$ (v' is real number) for any q value, and then the term containing the Hankel functions in (2) is rewritten as

$$\frac{H_1(v_q)}{v_q H_0(v_q)} \rightarrow - \frac{K_1(v_q)}{v_q' K_0(v_q')} \quad (7)$$

where $K_n(x)$ is the modified Bessel function of the second kind. Particularly, the case of $\{h, 2h\} = \lambda_0/2$ represents a cutoff of the trapped state.

Furthermore, for the cavity-open type resonator in Fig. 1(c) the following exchange only is needed in (2):

$$\frac{H_1(v_q)}{v_q H_0(v_q)} \rightarrow \frac{I_1(v_q)K_1(v_q'S) - I_1(v_q'S)K_1(v_q)}{v_q'[I_0(v_q)K_1(v_q'S) + I_1(v_q'S)K_0(v_q)]} \quad (8)$$

where $S = a/R$ and $I_n(x)$ is the modified Bessel function of the first kind.

ANALYSIS BY COMPLEX FREQUENCY TECHNIQUE

As the first approach we introduce the complex angular frequency

$$\omega = \omega_1 + j\omega_2; \quad f_1 = \omega_1/2\pi, \quad Q_f = \omega_1/2\omega_2, \quad (9)$$

and the complex relative permittivity

$$\epsilon_r = \epsilon_r(1 - j \tan \delta) \quad (10)$$

into (1), where f_1 and Q_f are the resonant frequency and Q -factor for a damped-free oscillation, respectively, and $\tan \delta$ is the loss tangent of dielectric.

ANALYSIS BY PERTURBATION TECHNIQUE

Following Kajfez's method, we can compute the Q_c values from

$$\frac{1}{Q_c} = \frac{1}{Q_{cu}} + \frac{1}{Q_{cl}}, \quad \frac{1}{Q_c} = \frac{2}{Q_{cu}}, \quad \frac{1}{Q_c} = \frac{2}{Q_{cu}} + \frac{1}{Q_{cy}}, \quad (11)$$

for Fig. 1(a), (b), and (c), respectively, where

$$\begin{aligned} Q_{cu} &= \frac{f_0}{(-\Delta f_0/\Delta M)\delta_c}, \quad Q_{cl} = \frac{f_0}{(-\Delta f_0/\Delta L)\delta_c}, \\ Q_{cy} &= \frac{f_0}{(-\Delta f_0/\Delta d)\delta_c}, \end{aligned} \quad (12)$$

and Q_{cu} , Q_{cl} , and Q_{cy} are ones due to the conductor losses of the upper and lower plates and of the cylinder, respectively. The frequency shift Δf_0

due to the cavity-wall perturbation Δx , where x represents M , L , or d , can be numerically and accurately computed from (1). Also $\delta_c = (\pi f_0 \mu \sigma)^{-1/2}$ is the skin depth of the conductor.

Similarly Q_d can be derived by means of the cavity-material perturbations. At first, from the definition of Q_d we obtain

$$Q_d = \frac{1}{\tan \delta} \frac{W_d + W_a}{W_d} \quad (13)$$

where W_d and W_a are the electric energy stored in the dielectric and air, respectively. Then we obtain

$$\frac{\Delta f_0}{f_0} = - \frac{\Delta \epsilon_r}{2 \epsilon_r} \frac{W_d}{W_d + W_a} \quad (14)$$

from the frequency shift Δf_0 due to the material perturbation $\Delta \epsilon_r$ in a cavity including dielectrics [9]. Hence from (13) and (14) the following formula can be obtained:

$$Q_d = \frac{1}{\tan \delta} \frac{f_0}{(-\Delta f_0/\Delta \epsilon_r) 2 \epsilon_r} \quad (15)$$

where the value of $\Delta f_0/\Delta \epsilon_r$ also can be computed from (1). Thus, using (11) and (15), we can obtain the unloaded Q , Q_u from

$$\frac{1}{Q_u} = \frac{1}{Q_c} + \frac{1}{Q_d} \quad (16)$$

This method is valid only without radiation.

COMPUTATION AND EXPERIMENT

The computation and experiment were performed using a (Zr,Sn)TiO₄ ceramic rod (MURATA MFG.CO., LTD.) with $\epsilon_r = 37.43$ and $\tan \delta = (0.205 + 0.170f_0)$ [GHz] $\times 10^{-4}$ and two copper plates with $\sigma = \sigma_0 = 0.92$, where $\sigma_0 = 58 \times 10^6$ S/m. These values were measured by a dielectric rod resonator method [10].

At first, for the TE₀₁ (1+δ)/2 mode of the parallel-plate-image type resonator in Fig. 1(a) and for the TE_{01δ} mode of the parallel-plate-open type one in Fig. 1(b), the complex frequency versus the distance M was computed using (1)-(6) with (9) and (10). The respective results are shown in Figs. 2 and 3 by solid lines. Broken lines in the figures show the cutoffs. The left-hand side of the cutoff is the trapped state region, while the right-hand side is the leaky state region.

In addition the measured values of the resonant frequency f_0 and the unloaded Q , Q_u by the swept-frequency method are indicated by dots in the figures. In both cases, the theoretical f_1 curves agree very well with the measured f_0 values. The theoretical Q_f curves in the trapped state, which actually means Q_d , are greater than the measured Q_u values since the conductor loss is not considered in the analysis, while the Q_f curves in the leaky state, which consist of Q_d and Q_{rad} , agree well to the measured Q_u values since the radiation loss is predominant.

In the following, for the same structures the Q_c , Q_d , and Q_u values in the trapped state were

computed using (1)-(7), (11), (12), (15), and (16). The respective results are shown in Figs. 4 and 5, where the computed f_0 curves are not shown since they are identical to the f_1 curves given in Figs. 2 and 3, respectively. In both structures, the Q_d values computed from (15) agree to within 0.05 percent with the computed Q_u curves in the trapped states in Figs. 2 and 3. Moreover, the computed Q_u curves agree very well with the measured Q_u values which are reproductions of those in Figs. 2 and 3. Thus validity of two methods described above was verified. It should be noted that the Q_c values increase rapidly with increasing M .

POSSIBILITY OF HIGH-Q DIELECTRIC RESONATORS

Finally, for the $TE_{01\delta}$ mode of the cavity-open type resonator in Fig. 1(c) with the optimum dimensions to obtain the best separation of higher-order modes [8], the f and Q values were computed using (1)-(6), (8), (11), (12), (15), and (16). When $\epsilon_r = 37.5$ and $D=10$ mm, the optimum values are $2L=4.19$ mm, $M=5.26$ mm, and $d=27.0$ mm, and then we obtain $f_0 = 5.37$ GHz and $Q_d \tan \delta = 1.026$. For $\delta = 1.0$ (copper) we obtain $Q_{cu} = 3.40 \times 10^5$, $Q_{cy} = 5.54 \times 10^5$, and therefore $Q_c = 1.30 \times 10^5$. Thus we obtain $Q_u = 9,520$ when $\tan \delta = 1 \times 10^{-4}$ and also $Q_u = 57,000$ when $\tan \delta = 1 \times 10^{-5}$. For a TE_{011} empty cavity, on the other hand, the theoretical maximum Q_u value attained when $d=2h$, is 41,000 at $f_0 = 5.4$ GHz. As a result, if low-loss materials with $\tan \delta$ of nearly 10^{-5} are developed, shielded dielectric resonators will realize the Q_u values higher than those of conductor cavities.

CONCLUSION

It is concluded that two approaches presented are effective for the separate and accurate estimation of the Q -factors due to the dielectric, conductor, and radiation losses for the TE_0 modes of the shielded dielectric resonators. The computed results show that the Q value due to the conductor loss increases rapidly as the conductor is moved gradually away from the dielectric. As a result, a possibility of realizing high- Q dielectric resonators in the microwave region was suggested. In addition, a practical application of such resonators in the millimeter wave region also can be expected as suggested by Dydyk [11].

References

- [1] J. Delaballe, P. Guillon, and Y. Garault, "Local complex permittivity measurement of MIC substrates," Arch. Elek. Übertragung., vol. 35, pp. 80-83, Feb. 1981.
- [2] M. Dydyk, "Dielectric resonators add Q to MIC filters," Microwaves, vol. 16, pp. 150-160, Dec. 1977.
- [3] R. D. Smedt, "Dielectric resonator inside a circular waveguide," Arch. Elek. Übertragung., vol. 38, pp. 113-120, Mar./Apr. 1984.
- [4] Y. Kobayashi and S. Tanaka, "Resonant modes of a dielectric rod resonator short-circuited at both ends by parallel conducting plates," IEEE Trans., Microwave Theory Tech., vol. MTT-28, pp. 1077-1085, Oct. 1980.

- [5] Sz. Maj and J. W. Modelska, "Application of a dielectric resonator on microstrip line for a measurement of complex permittivity," in 1984 IEEE MTT-S Int. Microwave Symp. Dig., no. 23-6, pp. 525-527.
- [6] D. Kajfez, "Incremental frequency rule for computing the Q -factor of a shielded $TE_{01\delta}$ dielectric resonator," IEEE Trans. Microwave Theory Tech., vol. MTT-32, pp. 941-943, Aug. 1984.
- [7] Y. Kobayashi, N. Fukuoka, and S. Yoshida, "Resonant modes for a shielded dielectric rod resonator," Trans. IECE Japan, vol. J64-B, pp. 433-440, May 1981. (translated in English, Electronics and Communications in Japan, vol. 64-B, pp. 44-51, Nov. 1981.)
- [8] Y. Kobayashi and M. Miura, "Optimum design of shielded dielectric rod and ring resonators for obtaining the best mode separation," in 1984 IEEE MTT-S Int. Microwave Symp. Dig., no. 7-11, pp. 184-186.
- [9] R. F. Harrington, Time-Harmonic Electromagnetic Fields, New York: McGraw-Hill, 1961, pp. 321-326.
- [10] Y. Kobayashi and M. Katoh, "Microwave measurement of dielectric properties of low loss materials by dielectric rod resonator method," IEEE Trans., Microwave Theory Tech., to be published, July 1985.
- [11] M. Dydyk, "Apply high- Q resonators to mm-wave microstrip," Microwaves, 19, pp. 62-63, Dec. 1980.

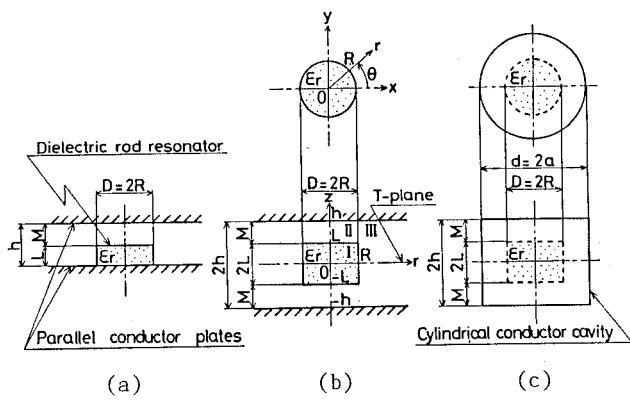


Fig. 1. Configurations of shielded dielectric rod resonators of three types; (a) parallel-plate-image type, (b) parallel-plate-open type, and (c) cavity-open type.

